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Abstract

Weighted automata (WA) and linear cost register automata (LCRA)
are two equivalent models of quantitative automata. LCRAs are deter-
ministic finite-state automata with access to write-only registers that can
be updated by combining other registers and constants using operations
over a semiring. They give a different perspective for the class of functions
computable by WA. For several natural classes of LCRA, we prove equiv-
alence with well-known classes of WA, mostly by bounding the ambiguity
of the latter.
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1 Introduction

Classical automata are finite-state machines that either accept or reject a given
word. Weighted automata (WA) are an extension of classical automata that,
instead of having a binary behavior, associates a weight with each word. WA
were introduced by Shiitzenberger [1]. A WA is defined over some semiring
S = (5,®,0,0,1), and each transition has an associated weight, which is a
constant from the semiring. The multiplicative operation ® of the semiring is
used to aggregate the weights along a run, and the additive operation & is used
to aggregate values of distinct accepting runs of a word. WA and decidability
of their properties have been extensively studied, e.g., in [2]. WA have found
applications in digital image processing [3], natural language processing [4], etc.

Cost Register Automata (CRA) is a deterministic finite-state model with a
finite set of write-only' registers that maps each word to a value. This model
was introduced in [5] by Alur et al. The registers hold values from some semir-
ing?, and on each step, the CRA takes a transition and updates the values of
the registers using update expressions. For each state, we have a final expres-
sion which is used to compute the output of the CRA. The update and final
expression are syntactical expressions defined with the set of registers X', the
constants, and the binary operations of the semiring. The class of functions
definable using a CRA depends upon the choice of semiring. In our discussion,
while comparing WA and CRA, we always assume that they are over the same
semiring S = (5, ®,®,0, 1), unless otherwise stated.

It was shown in [5] that, in general, CRA are strictly more expressive than
WA. For example, CRA over max-plus semiring can compute a function that
is exponential in the length of the word, while a function computable by WA
over the max-plus semiring is always bounded by a linear function. It is natural
to find structural restrictions on the CRA and study the classes of functions
definable by them. One such structural restriction for a transition of a CRA is
being copyless, which means that each register can be used to update at most
one register for this transition.

Copyless Cost Register Automata (CCRA) are CRA where every transition
is copyless. This class was proposed in [5], and the results related to its ex-
pressiveness are discussed in [6]. It was shown in [5] that the class of functions
computed by CCRA is a strict subset of functions definable by WA. Alur et al.
conjectured in [5] that the equivalence problem could be decidable for CCRA,
which was disproved in [7]. A fragment of CCRA, called bounded alternation
copyless (BAC) CRA, was introduced in [6]. This class is closed under reversal
and regular look ahead [6].

Linear Cost Register Automata (LCRA) are CRA in which all the update
and final expressions are linear, i.e., the expressions do not allow to multiply

IWrite-only condition means that the updates cannot depend upon the value held by
registers

2The general CRA uses the so-called cost models, and the class of cost functions definable
using a CRA depends upon the grammar, the domain, and the semantics used to evaluate the
expressions. In this work, we restrict the domain to be a semiring



two registers, and set registers to a constant. It was shown in [5] that LCRA
are equally expressive as WA. LCRA with resets additionally allow the update
expressions to be of the form x := ¢. This does not increase the expressiveness of
LCRA, since for each such update we can use a separate register initialized with
a constant, but could help to define more natural classes of functions definable
by LCRA.

LCRA give us a different perspective to reason about the functions that are
definable using WA. They could also be used to define new natural classes of
functions which cannot be defined via WA. In this work, we discuss various nat-
ural subclasses of LCRA obtained by further restricting the update expressions
and the final expressions. We also discuss the relations between the classes of
functions computable by these subclasses of LCRA and the classes of functions
computable by various types of WA.

Additive Cost Register Automata (ACRA), defined in [8], are CRA where
both the update and final expressions are of the form x+c¢, where ¢ € Z. . In [§],
it was shown that over tropical semirings, ACRA are equivalent to unambigu-
ous automata. A generalization of ACRA, which we call plusfree LCRA, over
arbitrary semiring has been discussed in [9]. In a plusfree LCRA, the update
expressions are of the form = := y ® ¢, but the final expressions are allowed to
be an unrestricted linear expression.

Outline

The organization of the thesis is as follows:

e In Section 2 we define the LCRA and WA formally and introduce some
notation that would be used later in the results.

e In Section 3.1 we prove, for the sake of completeness, that LCRA and
WA are equally expressive. We also define various classes of functions
computable by WA and LCRA and discuss various relations between these
classes.

We restrict the final expressions of plusfree LCRA to use at most k distinct
registers, and the class of functions computable by such LCRA is denoted
by LCRA(®). We shall prove in Lemma 3.2 that this class is a subset of
functions definable using k-ambiguous WA, over all semirings. For tropical
semirings, these classes coincide [9].

We impose the copyless restriction on LCRA, and define LCRAj, as the
class of functions computable by copyless LCRA with k registers. This
class is equal to the class of functions definable by k-sequential WA, over
all semirings. We prove this result formally in Lemma 3.4.

e In Section 4, we will discuss a specific class of LCRA called diagonal
LCRA. We show that the class of functions computable by diagonal LCRA
is the intersection of finitely sequential and unambiguous functions



2 Preliminaries

This section introduces the definitions related to weighted automata and cost
register automata.

2.1 Semirings

A semiring S = (5,®,,0,1) is a set equipped with two binary operations @
and ®, where (5, ®,0) is a commutative monoid with identity 0, (S, ®,0) is
a monoid with identity 1, and ® (left and right) distributes over &, and 0 is
an absorbing element for ® 3.

A semiring is said to be commutative when the multiplication (®) is com-
mutative. A semiring is said to be idempotent if xt ® x = x for all z € S. An
important semiring that will be used extensively in our discussion is the max-
plus semiring Npax = (NU {—oo}, max, +,—00,0). The max-plus semiring,
boolean semiring, etc., are idempotent.

We define a matrix M over S whose rows and columns are indexed by arbi-
trary finite sets A and B, respectively, as a a function M : A x B — S, and we
write M € SA%B,

e We define the sum of My, My € SA*B as My @ My = M € S4B such
that M(pa q) = Ml(pa Q) @ MQ(p7 Q)

e We define the product of M; € S4*B and M, € SB*C as a matrix
My @ My = M € S**¢ with M(p,r) = @ ,c (M1 (p,q) © Ma(g,7)).

o The identity matrix I € S4*4, for some set A, is a matrix with I(p,q) = 1
if p=gqand I(p,q) =0 if p # q¢ where p,q € A

e The zero matrix 04 € S4*4, for some set A, is a matrix 04(p, ¢) = 0 for
all p,g € A

2.2 Cost Register Automata

A cost register automaton is a deterministic finite automaton with write-only
registers that are updated on each transition using expressions built from some
predefined grammar. The registers hold values from a semiring, and they are
updated using the expressions that involve operations on values of registers and
elements from the semiring and combined using the semiring operations . We
present an equivalent definition of LCRA that uses matrices which is helpful for
our discussion.

Definition 2.1. A Linear Cost Register Automata (LCRA) over the semiring
S =(5,4,0,0,1) is a tuple A = (Q, %, X, qo, d, v, 1) where Q is a finite set
of states, ¥ is an alphabet, X is a finite set of registers, go € @ is the initial
state, 0 : (Q x X) = @ X S** is the transition function, vy € S?% is the initial
valuation, and y : Q — S% is the output function.

30 is said to be an absorbing element for @ if for all s € 5,5 ©0=00s=0



" 1 —o0 “ z:=max(z+ 1,y +2)
2 1 y:=y+1

vp=[1 1] [0 0] :1 z+y
— a — s g a —>
z = max(z,y +2)
a/B i] a/y::max(z+1,y+1)
(a) Matrix representation (b) Expression representation

Figure 1: Two equivalent representations of a CRA over the semiring Ny, and
unary alphabet {a}

A configuration of an LCRA is a pair (¢,v) € Q@ x SV . The initial config-
uration is (qo,vp). If the current configuration is (¢q,v), and §(q,a) = (¢', M)
where M € S*” is an update matrix, then after reading a letter a € X the
next configuration is defined as (¢’,v’) where v/ = v © M . We denote this

transition by ¢ RAEEN ¢, and the update of a register y € A for this transition is

given by the expression y := @, y(z © M(x,y)). A run of the LCRA A over

. . a1,M; as, Mo
the word w = ajas...a, is a sequence of transitions p = g9 —— ¢ ——

qs - .. an Mn, Gn, where for each 1 <i <n,d8(gi—1,a;) = (¢;, M;) and M; # Ox.

The output of A over w is defined as v = vg © M1 © Ms --- M, ® p(qn)
where vg and p(q,) are interpreted as row and column vector, respectively. If
there is no run for a word, then we associate the output 0 to it. The LCRA A
computes a function [A] : ¥* — S that maps each word w to the output of A
over w.

The expressiveness of LCRA can restricted by putting contraints on the
update and final expressions.

2.3 Weighted Automata

A weighted automaton is a finite state automaton where transitions have as-
sociated weights from a semiring S. It associates a weight (or value) from S to
each word w € X*.

Definition 2.2. A weighted automaton (WA) over the alphabet ¥ and the
semiring S = (5,®,®,0,1) is a tuple W = (Q, X, T, A, ) where Q is a finite set
of states, T' is the transition function 7': (@ x ¥ x Q) — S, and A\,v: Q — S
are the initial and final functions, respectively.

If Wisa WA and p,qg € Q, a € 3, and 0(p,a,q) = s € S\ {0}, then we denote

this by the notation p —% ¢. A run p of W over the word w = ajas...an
az,s Qn,ySn

is a sequence of transitions gy —2% ¢ 225 gy ... 2 ¢ where for each
1 <4< n wehave T(¢;—1,0a:,¢;) = s; # 0. The weight of the run p is defined



as Wt(p) = Mqo) © (OF_18:) © ¥(gn). A run is called accepting if it’s weight is
non-Zero.

The weight of W over a word w is defined as the sum (@) of weights of all
the runs of W over the word w, and if there is no run of W over w, then we
define the weight to be 0.

A weighted automaton computes a functions [W] : £* — S. This function
maps each word w to the weight of W over the word w.

An equivalent definition of weighted automata using matrices is described
in the following.

Definition 2.3. A weighted automaton over a semiring S = (S,®,©®,0,1) is
a tuple (Q, %, \, u,7) such that A € STH*Q ~ ¢ §@x{1} and p : (B,-, {e}) —
(S9*Q . I) is a monoid homomorphism [10].

The weight of a word w = wyws ... wy, is defined as [W](w) = A\Opu(w)®y =
A (p(wr) © p(w) - .. p(wn)) © .

We call this representation of a weighted automaton a linear representation.

A state ¢ is initial if A(q) # 0, and final if v(q) # 0. A state ¢ is said to
be reachable from state ¢’ (or state ¢’ can reach the state ¢) if there is at least
one run starting from ¢’ that ends at g for some word w. A state is useful if
it is reachable from some initial state and can also reach some final state. An
automaton is trimmed if all its states are reachable and useful.

3 Relation between classes of WA and LCRA

In this section we will define various classes of functions from strings to values via
structural restrictions on weighted automata and LCRA, and study the relation
between them. We shall also show that non-deterministic WA and LCRA define
the same class of functions, i.e., they are equally expressive

3.1 LCRA and WA are equally expressive

It has been proved that the class of functions computable by LCRA is equal to
that of weighted automata [5]. We prove this result in the Lemma 3.1, for the
sake of completeness.

We introduce some notations that will be useful in proving the main result
of this section. For a,b € Z, we define [a,b] = {n € Z | a < n < b}. Let
W =(Q,T, \,v) be a weighted automaton. We define the running weight of
arun pi= gy —5 qp 2 gy Y g, as Wik(p) = Mgo) © O, mi.
Note that multiplying the running weight of any run with final weight of its last
state, denoted by end(p), will give us the weight of the run. Let us denote the
set of all accepting runs of a word by R(w).

A weighted automaton W = (Q, A\, T,) is said to be layered with layers
Q1,Q2,...,Qy, if the following conditions are met:

e QNQ;=0fori+j



Q1 o) Qs o Q2 Qs
(a) W1 (Layered) (b) W2 (Not layered)

Figure 2: The automata W is layered with layers @1, @2 and @3. The automata
Wy is not layered with layers (@1, @2 and Q)3 because the two states in layer Q1
have transition to states belonging to different layer on reading a

o () =U;Q;

o If T(Qaavp) 7é ®7 T(q/7a7pl) 7& 0 and qaq/ € Qi7 then papl S Q]7 for some
je[l,m].

The weighted automaton we will construct in Lemma 3.1 from an LCRA is a
layered weighted automaton.

In a layered weighted automaton, on reading a word w, all the runs end in the
same layer, say (,,, and we say that automaton reaches the layer @,, on reading
w. We define the running weight of the layer ); on reading a word w, as a

function Wt.[Q;, w] : Q; = S such that Wi.[Qi, w](q) = D, cna(p)=g Wt (p)-
Lemma 3.1. The class of functions computed by weighted automata over a
semiring S is equal to the class of functions computed by LCRA over S.

Proof. (=)
Let W = (Q,%, )\, u,y) be a weighted automaton in linear representation.
We construct the corresponding LCRA A = ({q}, 2, X, q,d, vo, 1t').

o X ={z4]qeQ}

¢ 0'(q,a) = (q, M,) for all a € % where M, & SX* defined as My(xg,q) =
w(a)(g,q') for all zg,zy € X

o y(zy) = A(1,q) for all g € Q

o 1/ (q)(zq) =7(g,1) forall g € Q
We shall show that [[A] = [W]. Consider a word w = ayas . . . a,. The run of

a1,Ma, az,Mg, an,Ma,,

A over w will be q q, and the output of A over
w will be [A](w) = vg© (Mg, © My, ... M,, ) ©p'(g). Note that up to renaming



(gm, @2)

Figure 3: Illustration for the weighted automaton constructed equivalent to a
CRA with m-states and n-registers. The layers are shown inside the dotted
rectangles

of sets indexing the matrices, we have M, = u(a) for all a € ¥, vy = A, and
p' =1, therefore [AJ(w) = A © (u(a1) © plaz) . .. plan)) © v = [W](w).

(<) Consider an LCRA A = (Q, %, X, qo, 9, Vo, pt). The idea is to have a state
(g, x) corresponding to each state-register pair such that, if A reaches the state
q on reading w with value of register x = ¢, then the sum of weights of all
runs ending at the state (¢, z) on reading w, is equal to ¢.  We construct an
equivalent weighted automaton W = (Q x X, X, A, ¢, v)) with

e \((qo,z)) =vp(z) for all z € X and A((q,x)) =0 for all ¢ € Q,q # qo,x €
X

o If 6(¢q,a) = (¢, M), then &'((q,x),a,(¢",y)) = M(z,y) for all z,y € X,
and ¢'((¢,z),a, (p,y)) =0 forallpe Q\ {¢'},z,y € X

e 1((g.7) = nlg)(a) for all g € Q. € X.

It can be readily verified that the constructed automaton is layered with
the layers being Q; = {(¢;,z) | * € X'}. Recall that Wt [Qk, w](qx, ) is equal
to the sum of weights of all runs of W over w ending at the state (qx, x).

We claim that if A has the configuration (g, ) on reading w, then
Wt [Qr, w](gr, z) = v(x) for all x € X. We prove the claim by induction on the
length of the word w. The base case corresponds to w = €. The configuration
of CRA A on reading e will be (go,vp), and the W will be in the layer Q.
Wit [Qo, €](qo, ) (z) = A((go, z)) = vo(z) for all x € X, by construction. Hence,
the base case is established.

For the induction step, suppose the claim holds for all words w of length up
to k, and we need to prove that it holds for the word wa with length k& + 1.

10



On reading the word w, let the configuration of A be (g;,v) and W be in the
layer ;. Further, on reading next letter a, let the configuration of A changes to
(gj, ') by taking the transition g; oM, ¢;, where v/ = v ® M, and the W be in
the layer @;. By induction hypothesis, we assume that Wt,[Q;, w](g;, ) = v(z)
for all z € X. All runs of W over w ends at some state of the form (g;,y) for
some y € X, and each of those run can be extended to a run of W over wa
that ends in the state (g;,x) for some z € X if, and only if, 6((¢,y),a, (¢, x))
is non-zero. Therefore, by using the distributive property of multiplication over
addition, we show that for all x € X

WtT[ijwa](qJ"x):@(Wtr[Qiaw](qm )65(((1% ) ,(Qj,$)))

yeX

_®Wt Qu q“ )@M(x,y)
yeXx

=Py o M(z,y)
yeX

— V/(x)

Let, after reading the word w, the CRA A is in configuration (g;, ), and the
weighted automata is in layer Q; with running weight of the layer W¢.[Q;, w] =
f. The output of the CRA would be v® pu(g;). The weight of W over the word w
would be [W](w) = @ pcg, [(P)Ov(P) =vou(q), as for all P = (¢;,y) € @,
we have £(gi,y) = v(y) and 7(P) = u(g:)(y). Therefore, [A](w) = [W](w). O

3.2 Classes of Weighted automata

Given a weighted automaton, suppose that every word w of length n label at
most f(n) runs. The nature of the function f(n) gives rise to different types of
WA, and corresponding to each type, we get the class of functions which can be
computed using that type of WA.

Definition 3.1. A weighted automaton A is said to be unambiguous (k-ambiguous,
polynomially ambiguous resp.) if the number of accepting run (with non-zero
weight) of A over any word w is bounded by 1 (k, p(Jw|) for some polynomial
p, resp.). It is called finitely ambiguous if it is k-ambiguous for some k.

The class of functions that are computable by unambiguous (k-ambiguous,
finitely ambiguous, polynomially ambiguous resp.) weighted automata is de-
noted by UNAMB (kAMB, FAMB, PAMB resp.)

We will now define deterministic WA.

Definition 3.2. A WA is said to be deterministic (or sequential) if it has at
most one initial state and at any state no two outgoing transitions have the
same label.

Let W1, Wa, ..., Wy be deterministic weighted automata with disjoint state
spaces. The union of W;’s is the automaton formed by putting W;s together.

11



a\1,b\0

\ 4
Q
=
\ 4
A\ 4

92

z =z+1
wfr iz
y =y v

y+1

0 e b\1 o a 0' ’J oo Yy
(a) WA W, (b) CRA A4,
a\1,b\0
0 (1 afr oo
— s

z=0y=0 m T =
G\O,b\l — D b:{y =y+1

—> —> max(z,y)
(C) WA W2 (d) CRA .Az

Figure 4: Unambiguous WA W; and plusfree LCRA A; compute the same
function f(wa) = |wal, and f(wb) = |wblp.

2-ambiguous WA W5 and plusfree LCRA A, compute the same function f(w) =
max(|w|q, |w|p).

Formally, let W; = (Q;, \i, T3,7;) with Q; NQ; =0 fori # j
we define the union of W’s as W = (U;W;, A\, T, v) with A(g;)
Y(gi) = 7i(q:), for all ¢; € Q;, and T'(q,a,q') = T;(g,a,¢") iff ¢,¢" € Q;. It can
be readily verified that W computes the function [W](w) = &, ([W;i](w))

€ [1,k], then
= \i(q;) and

Definition 3.3. A WA is called k-sequential if it is union of k sequential (i.e.,
deterministic) WA. It is called finitely sequential if it is k-sequential for some k.
We denote the class of functions that are computable by k-sequential (finitely
sequential resp.) automata by kSEQ (FSEQ resp.).

Unlike finite state automata, in general, a WA which is a union of k deter-
ministic WA may not have an equivalent deterministic WA. Few example of
automata over the classes we defined are given in the Figure 4.

12



Figure 5: CRA over Ny« computing an exponential function f;

3.3 Classes of LCRA
We define the copyless LCRA in the following.

Definition 3.4. An LCRA A = (Q, X, qo, 0,10, ) is copyless if every update
matrix M of A has at most one nonzero entry in each row. We denote the class
of functions that can be computed by a copyless LCRA by LCRA®. The class of
functions computed by copyless LCRA with k registers is denoted by LCRAY.

In terms of the update expressions, this class contains the LCRA that do not
copy any register, i.e, for each transition, each register appears at most once in
the right hand side of all the register update expressions.

Definition 3.5. An LCRA A = (Q, X, qo, J, 1o, ) is plusfree if for each tran-
sition, the update expression of each register x is of the form z := y®cor z :=0
(in matrix representation, every update matrix of A should have at most one
nonzero entry in each column). We denote the class of functions computable
by plusfree LCRA in which p(g) has at most k non-zero entry for all ¢ € @ by
LCRA(®).

We define LCRA(®)g = Upey LCRA(®)r. We denote LCRA(®)(g),1 by
LCRA(@)(@).

Definition 3.6. A LCRA is diagonal if every update matrix of A4 is diagonal
matrix (or, the update expressions are of the form = := x ® ¢). The class of
functions computable by diagonal LCRA A = (Q, X, qo, 0, g, 1) in p(g) has at
most one non-zero entry, for all ¢ € Q, is denoted by LCRA®(®).

We shall prove that LCRA(®), C kAMB, LCRA(®) = UNAMB and LCRA§,
kSEQ in Theorem 3.2, 3.3 and 3.4, respectively. The second result was claimed
in [9] for tropical semiring.

3.4 LCRA(®); and k-ambiguous functions

For every function in LCRA(®), we can find an equivalent weighted automaton
that is at most k-ambiguous, this result is proved in the following theorem. The
transformation used in the proof is the same as in Theorem 3.1.

Theorem 3.2. The class LCRA(®), C kAMB.

Proof. Let f € LCRA(®)x be a function, and let A = (Q, X, qo,0, Vo, pt) be a
plusfree CRA computing f with at most k non-zero values in the vector u(q)

13



for each ¢ € (. We use the same construction as described in Lemma 3.1 to
construct an equivalent weighted automaton W = (Q x X', A, T, ~y) that computes
the function f. We assume that W is trimmed with layers Q1, @2, . . ., @y, where
layer Q; = {¢;} x X. Note that for all ¢;,q; € Q, T((gi,x),qa, (g;,y)) # O iff
M(z,y) # 0, where 6(g;, a) = (g;, M),

Let all the runs of W over the word w = ajas .. .a; end in some state of the
layer Q; . We claim that for each state (¢;,2) € Q;, there can exist at most one
run that ends at (g;, z). Suppose, for the sake of contradiction, that there exist
two distinct Tuns p := (go, 7o) - (q1,71) ... —5 (g, 21) and p' = (qo, 2})
(qr,zh)... 2 (qi,z;) of W over the word w, where z; = 2] = z, and ¢ € Q;.
As the runs are distinct, there should exist j € [0,n — 1] such that z; # 2, and
zj+1 = 2j4,. Therefore, the CRA has the transitions (g;, z;) REAEN (Gj+1,Tj+1)
and (gj, %) SEREN (¢j+1,2j41), and thus, M (zj,x;41), M (2}, 2j41) # 0, where
0(qj,aj41) = (gj+1,M). As this contradicts the fact that M can have at most
one nonzero value in each column, the claim is established.

Due to the restriction on the final function, in each layer @;, there will be
at most k states that are final state (i.e., with non-zero outgoing weights or
v((¢i,y)) # 0). As all runs of W end in the same layer, and there is at at
most one run for each state in the layer, there could be at most k accepting run
because there are at most k final states in each layer. Therefore, the constructed
weighted automata W is at most k-ambiguous, so f € kAMB. O

Now, we shall prove the following.
Theorem 3.3. The class LCRA(®) = UNAMB.

Proof. From Lemma 3.2, we know that LCRA(®) = LCRA(®); € UNAMB. Tt
remains to prove that UNAMB C LCRA(®). Let f € UNAMB be any function,
and W = (Q, A\, T, ) be an unambiguous weighted automaton computing f. We
assume that W is trimmed.

We construct an equivalent CRA A = (Q', X, qo, 0, vo, pt) with

oQ’:QQ
X={z,|qeqQ}
e g0 ={q|A(g) # 0}

e §(P,a) = (P, M) for all a € ¥ where P’ is the set of all states that can be
reached from some state in P via transition labelled a in the automaton
W, and M € S* defined as M (2, 24) = T(q,a,q') for all ¢ € P,q' € P’

o vy(zy) = A(g) for all z, € X
e 1(P)(zy) =~(q) if ¢ € P, else it is 0, for all P € 2@

We remove all the states from A that are not useful to obtain the equivalent
automaton A’. By construction, A’ reaches the state P € 29, after reading the
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word w, if P is exactly the set of states that W can reach on reading w. We
claim that for each transition 6'(P,a) = (P’, M) in A’ the matrix M has at
most one non-zero value in each column. If not, let M(z,,x,) = d(p,a,q) and
M(zp,xq) = 06(p', a,q) be non-zero entry for the transition ¢'(P,a) = (P’, M)),
where p,p’ € P and g €. As A’ is trimmed, by construction, there will exists a
word w that labels at least two runs in W that can reach p and p’. Consequently,
the word wa will have at least two distinct runs in W that both reach ¢. Again,
since W is trimmed, there exists a word waw’ that extends the the two run from
q to reach some final state, or in other words, has two distinct accepting runs,
but this contradicts the fact that W is an unambiguous weighted automaton.
We now show that for any state P in A’, there could be only one g € P for
which v(g) # 0. Suppose, for the sake of contradiction, that there exists distinct
p,p’ € P such that v(p),v(p') # 0. By construction, there must exists a word
w that labels at least two accepting runs reaching p and p’, but this contradicts
that W is unambiguous. Therefore, the vector p(P) has at most one non-zero
value for all P, and the CRA A’ is plusfree with u(q) being non-zero for at most
one register, and computes the function f, so f € LCRA(®). O

3.5 Copyless LCRA and finitely sequential WA

We shall now prove the following Theorem.
Theorem 3.4. The class LCRA}, = kESEQ.

Proof. (=) Let f € LCRA{, be a function, and let A = (Q, X, qo, 9, Vo, i) be the
copyless LCRA with k registers computing f. Let X = {x1,29,...,2;} and
Q =@ x X. We construct an equivalent weighted automaton W = (Q, \,T,~)
using the construction described in Lemma 3.1. We define U = Ule W, where
each W; = (Q x {i}, A\;, T;, ;) is identical to W with possible exception to the
initial function.

Formally, for all states (¢, x,1), (¢, 2',i) € Q x {i}, we have

o \;((qo,xi,1)) = A(qo,x;), and O elsewhere.
hd Ti((Qv z, i)v a, (qlv xla Z)) = T((Qa Ji), a, (q/a xl))
hd Vi((Qa'ra 7’)) = ’Y((QVT))

It is readily checked that U defines the same function f . We will prove
that each W; is sequential. Each state in W; has at most a single outgoing
transition on each letter. Suppose not, for the sake of contradiction, then let
T:((q,x,1),a, (p,y,1)), T;((q,2,%),a, (p,y,i)) # O where y # ¢, and therefore,
M(z,y), M(z,y") # 0 where §(q,a) = (p, M), but this contradicts the assump-
tion that each matrix M has at most one non-zero value in each row. As each
W; has a single initial state, W; is deterministic.

(<) Let f € kSEQ be a function, and U = Ule W; be the finitely sequen-
tial weighted automaton computing f, where each W; = (Qi, qoi, Mi, 6i,7Yi) is
sequential. The idea is to construct a LCRA A that stores the running weight
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of each W; over a word in a unique register x;. Formally, A = (Q, X, qo, 9, Vo, 1t)
with

Q=Q1xQ2...xQx
X={z;|1<i<k}

o 5((q1,q2,---aqr),a) = (¢4, 5, - - - q1.), M) where 6;(¢;,a) = (g}, m;) and M
is a diagonal matrix with M (x;,z;) = m;

b Uo(l“i) = )\i(QOi)

(a1, g2, - ax)) (i) = (vi(qi))

Let the final configuration of A after reading w be ((¢1,¢2,---,4s),v) and p; be
the unique run of W; over w, then it follows directly from the construction, that
v(x;) will hold exactly the running weight of W; over w, or v(z;) = Wt,(p;).
We have

[Ul(w) = @(Wt (pi) © 7i(ai))

= @ xz Q’Yz qi )
—@ 1'1 @,U, (]17Q2w~~»qk))(mi)))
:u®7((q1,qz7--~7%))
= [Al(w)
O

Note that each matrix of the copyless C RA constructed from a finitely se-
quential weighted automaton in Lemma 3.4 is a diagonal matriz, and hence we
get the following corollary.

Corollary 3.4.1. Let A € LCRAj,. We can construct an equivalent LCRA
B with k registers such that each update expression in the CRA is of the form
x =z O c (in matriz representation, each update matriz is a diagonal matriz).

Another direct corollary of Lemma 3.4 is the following that has been men-
tioned in [9].

Corollary 3.4.2. The class LCRA° = FSEQ.

The Figure 6 illustrates the relation we have proved so far. In general, all
these classes are distinct.
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Figure 6: The illustration of relation between classes of LCRA and WA over an
arbitrary semiring.

4 Relation between unambiguous finitely sequen-
tial WA and diagonal LCRA

In this section, we shall first prove that if a function f € FSEQN UNAMB, then
the function is computable by a weighted automaton which is both, finitely se-
quential and unambiguous. We use this result to prove that the class LCRA®(®) =
FSEQN UNAMB

We shall assume that all CRA and weighted automata in this section are,
unless otherwise stated, over the semiring Ny,.. We have the Theorem 4.1 that
proves that the class of functions computable by the diagonal LCRA with at
most one non-zero value in final function for each state, i.e., LCRA®(®), is equal
to FSEQN UNAMB.

Theorem 4.1. The class LCRA(®) = FSEQN UNAMB.

In subsection 4.1 and, we will study the Lemma that are necessary to prove
this result. In the following section, we prove a few elementary results which
are necessary for our proof.

4.1 Class of functions computable by WA over Z,., is
closed under difference

We define the negation of the function computed by an Z-automata in the
following definition. Note that we define —(—o0) = —o0.

Definition 4.1. Let A be a Z-automata. We define the negation function
of A as [—A](w) = —[A](w).

We first prove in the following lemma shows that the negation function of a
Z-automaton is computable by a Z-automaton.
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Lemma 4.2. Given a Z-automaton A = (Q,\,T,~), there exists a Z-automaton
B that computes the negation function of A. Moreover, if A is k-ambiguous, then
so is B.

Proof. Construct an Z-automaton B = (Q, X', T,v) with
e N(g)=—-X(g) forall g e Q
e T'(p,a,q) = =T(p,a,q) for all p,q € Q

® v(q) = —(g) forallg € Q

It can be readily seen that [B] = [—A], and if A is k-ambiguous, then B would
also be k-ambiguous. O

We define the addition of the functions computed by the automata as follows.

Definition 4.2. Let A and B be two Z-automata. We define the function
[C] = [A] + [B] as [C](w) = [A](w) + [B](w).

It is obvious that C'(w) would be not equal to —oo iff A(w) and B(w), both,
are not equal —oo. In the following Lemma, we show that we can compute the
addition [A] + [B] with a Z-automaton.

Lemma 4.3. Given two Z-automata A and B over Ny, we can construct a
Z-automata C' that computes the function [A] + [B]. Moreover, if A is unam-
biguous, and B is k-ambiguous, then C would also be k-ambiguous.

Proof. Let A = (Q1,M1,T1,7) and B = (Q2,A2,T2,72). Construct C =
(Q7 >\’T7 ’y) With

o Q=0Q1 xQs
A(q1,92)) = M(q1) + A2(qe), for all g1 € Q1,92 € Q2
),a

T((q1,92),a, (¢}, 5) = Ti(q1,a,q)) + To(g2,a,¢5) for all ¢1 € Q1, g2 € Q2

and a€EX
e Y((q1,42)) = n1(q1) +12(q2), for all 1 € Q1,¢2 € Q2

Let w = ajaz...an, and p = (qo, @) = (q1,¢}) -+ = (qn,¢,) be any run,
whether acceptmg or not, of C' over w. Let us define H A(p) == qo N Tt
qn, and I (p) := ¢} SN qi - - Aoy q,,. Tt readily follows from the definition
of C that IT4(p) and Mp(p) are runs of A and B over w respectively, and
Wit(ILa(p))+Wit(Ilp(p)) = Wit(p). In addition, IT14(p) and IIp(p) are accepting
runs of A and B respectively if, and only if, p is an accepting run of C.

Qn

Let pr=qo S q1... 2 gpand py = ) 25 ¢ ... 2% qn be any two runs

an

of A and B over w respectlvely We define p; X po := (qo, @) 5 (q1,q)) . 2

(an, qn)-
Let p be the accepting run of A over w, and o01,09,...,0;, where j < k,

be all the accepting runs of B over w. Then, for i € [1,5], p X o; should be
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accepting run of C' over w with weight Wt(p) + Wt(o;). If there is any other
accepting run of C' over w, then this will either contradict the assumption that
A is unambiguous, or B has exactly j accepting runs over w. As B can have at
most k accepting runs over any word, therefore C' is k-ambiguous. Finally,
[CT(w) = max (Wi(p x 07))
i€[1,5]
= max (Wt(p) + Wt(o;))
i€[1,4]
= Wt(p) + max (Wt(o;))

ie[lvj]

= [Al(w) + [B](w)
O
We now define the difference of functions computed by two Z-automata.

Definition 4.3. Let A and B be two Z-automata. We define the function

[C] = [B] - [A] as [C](w) = [B](w) — [A](w).
A direct corollary of Lemma 4.3 is following.

Corollary 4.3.1. Given two Z-automata A and B, we can construct a Z-
automata C that computes the function [B] —[A]. Moreover, if A is unambigu-
ous, and B is k-ambiguous, then C would be k-ambiguous.

Proof. Use Lemma 4.2 to construct the Z-automata A’ computing the function
—[A], and then use Lemma 4.3 to construct the k-ambiguous Z-automata C
computing the addition of functions computed by B and A’. O

4.2 Z-automata which compute positive functions can be
converted into N-automaton over max-plus semiring

We introduce the notation used in the next result. Let W = (Q,\,T,v) be
a weighted automaton over the semiring S = (S,®,®,1,0). We define the
internal weight of a run p := gy —% g1 —"2 gy ... 22 g, as Whin(p) =
(O, m;. Note that g (g, resp.) need not be an initial (final, resp.) state.

In the following Lemma we prove a lower bound on the internal weight of

any run over an Z-automaton which computes a positive function.

Lemma 4.4. Let C be a trimmed Z-automaton with [C] > 0, There exists a
number M € N such that internal weight of any run of C' over any word w
cannot be smaller than —M.

Proof. Let V be the set of all weight on the transitions, initial weights, and final
weights of C, and vmax = maz({|v| | v € V}), where |v| denotes the absolute
value of v. Let M’ = vy - IV, where - denotes the usual multiplication for
integers and N = |Q|. Let M =2 - M’.
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We shall prove this claim by contradiction. Suppose there exists a run p,
of C over w that starts at the state ¢ and ends at p, and Wt;,,(p) < —2M’.
Since W is trimmed, there exists a word that label runs from some initial state
go to ¢ (p to a final state gy, resp.), let u (v/, resp.) be smallest such word. It
can be readily seen that the length of u,w’ are bounded by N —1 = |Q| — 1, and
hence the internal weight of run from ¢ to ¢ and p to gy on reading u and «’
are bounded by vpmax - (N — 1). Therefore, there exists a run p of C over wwu’
which starts at initial state go and ends at final state gy with internal weight
U'= Wiy (u) + Wt (w) + Wi (W) < vmax - (N — 1) = 2M' + vppax - (N — 1) =
—2-Vmax. This would be an accepting run, and since initial and final weights are
also bounded by vimax, the weight of this run Wit(p) < —2 - Vmax + 2 - Umax = 0.
However, C' is unambiguous, so the weight of C' over uwu’ is Wt(p) < 0 which
contradicts the fact that [C] > 0. O

The following lemma shows that we can always assume that for any f €
UNAMB, the initial and final weights of the unambiguous weighted automaton
computing a function f are either 0 or 1.

Lemma 4.5. For every unambiguous weighted automaton W = (Q, X\, T,~) over
S =(S,®,,1,0), there exists an equivalent unambiguous weighted automaton
U= (Q,N, T,y with the initial and final weights being either O or 1 for all
the states.

Proof. Let Q' = Q@ x{—1,0,1}. For all ¢ € @, we define M'(¢,—1) =1, N'(q,0) =
N(g,1) =0,+(q,—1) =+'(¢,0) =0 and 7/(¢,1) = 1. For all p,q € Q, we define

T(p7a7q)®A(Q)7 1fx:_17y:0

T(p,a,q), fr=y=0

T'((pr2), 0 (g,9) = § -0 0 9) fo=y=0
T(p,a,q) ©7(q), ifr=0,y=1
0, otherwise

Note that any accepting run of U over a word w can only, and it must,
reach a state (gf,1) € Q x {1} at the end. For an accepting run p := gy —
Q- Qo1 2 g of W over w = ajas . . . a,, we can find find a unique accepting

an

run p’ := (qo, —1) = (q1,0) ... (gn_1,0) = (gn, 1) of U over w, and vice versa.
Therefore, U is unambiguous. We have

n—1

Wt(p) = Ago) © @ (T(gis aiv1,qiv1)) © Y(qn)
i=0
= (Mqo) © (T'(qo, a1,q1)) © @ (T(qiy aitr1,qi+1)) © (T(qn—1,an, qn) © v(qn))

n—2
= T((Q7 _1)7a17 (QI,O)) O] @ (T((QZ7O)7 41, (qi+17 0))) © T((anla O)7an7 ((Zm 1))
=1

=Wit(p')
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Therefore, [U] = [W]. O

In the following lemma, we prove that if a nonnegative function f is com-
putable by Z-automaton then f is also computable by an N-automaton. This
result is also given in [2], but we give a different proof here.

Lemma 4.6. Let C be an unambiguous Z-automaton with [C] > 0. There
exists an N-automata D such that [D] = [C].

Proof. We assume that C is trimmed, and, using Lemma 4.5, that all the initial
and final weights are either —oo or 0. Using Lemma 4.4, let M € N be a number
such that internal weight of any run of C' over w Wt;, (w) > —M.

Let us define C; = @ x {i}, and Q" = U,;c_psa Ci- We construct an
N-automaton D = (Q', N, T",7") over Np.x with

e Forall a € ¥ and I,1' € [M, M],

0, ifl’! —1=T(q,a,q")
T'((q,0),a,(¢\ ") = {1+ T(g,a,q') =V, ifl+T(g,a,q') > M =1'
—00, otherwise

e For all ¢ € Q,1 € [M, M], N(q,1) = A(q) if I = 0, otherwise —o0
e Forall g € Q,l € [M,M], v ((g,1)) =~v(q) +1if I > 0, otherwise —co

We need to prove that [D] = [C]. Figure 7 may help understand the
following argument. The intuition behind the construction is that we store the
running weight of the run by moving from one copy of C' to another to avoid
taking any transition with negative weight. The formal proof of the correctness
of the construction is given below.

Let w = aqas2 .. .a, be a word. Let p = (qo, co) 4, (q1,01)7...,ﬂ> (qnscn)
be a run of D over w, we define IT;(p) := g0 - q1,. .., =+ gn. Let Ro(w) and

Rp(w) be the set of all runs, that from some initial state 4, of C and D over w,
respectively. We shall prove that for each run p € Re(w) with end(p) = g, there
exists a corresponding run p' € Rp(w) with end(p’) = (¢,1) such that following
hold:

P.1 p = II1(p'). In other words, the projection of run of D over the first
component is a run over C

P.2 Wt.(p) = Wt.(p') +1
P.3 Wt.(p') > 0 then! >0

We prove this by induction on length of the word. Note that Wt,(p) = Wi (p)
for any run p of C' or D because the initial weights is 0 for all initial states in
both C and D. For the base case €, the run of C' with state ¢ € @ corresponds to

4Each run considered in this proof starts from some initial state unless otherwise stated
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(b) AutomatOn D

Figure 7: Tllustration of construction of N-automaton D for the Z-automaton
C. Corresponding to a transition with negative weight —{ in C, we move from
C; to C;_; with 0 weight, and for positive weight k£ in C', we move from C; to
Citr with weight 0 if i + £ < E| otherwise to Cg with weight ¢ + k — E, while
keeping track of the states in C'
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the run D with initial state (¢,0) € @', and it can be readily seen that P.1, P.2,
and P.3 hold. Assume that the result holds for word w of length upto k. We
shall prove that the result holds for the word wa of length k£ + 1. Each run of C'
(D, resp.) over wa will be an extension® of some run p in R®(w) (p’ € RP(w),
resp.). Let p € R(w) and p’ € RP(w) be any two corresponding runs, where
end(p) = q and end(p’) = (q,1). We shall show that the we can extend p with
transition ¢ = ¢’ iff we can extend p} of p’ with (¢,1) = (¢’,1’) such that p;
and p) satisfy P.1 to P.3.

(=) Letd=1T(q,a,q"), and p = l+d. Let I’ = min(p, M). We claim that we can
extend the run p’ with the transition (¢,1) = (¢’,1') with weight max(0, p— M))
to get the run pj of D over wa. If we prove that I’ € [-M, M|, and P.3 holds
for I/, then it immediately follows from the construction that P.1 and P.2 hold.
We will consider the following two cases.

Case 1. Wt.(p') =0: We have Wt.(p) = Wi,.(p') +1 =1. We have Wt,.(p1) =
Wt.(p) +d =1+ d, but since Wt.(p1) > —M, we have p =1+4d > —M. Hence,
—M<p=U<M,orl' €[-M,M]. If Wt,.(p}) > 0, then we must have taken
the transition to a state of the form (¢, M), and hence I’ = M > 0.

Case 2. Wt.(p') > 0: It is clear from the construction that Wt.(p') > 0 is
only possible if a state of the form (r, M) is visited during the run p’, and let
(r, M) be the last such state visited in p’. Let us divide the run p’ = (go,0) ~~,
(r, M) ~~, (q,1) into o} = (qo,0) ~y (r,M) and o} = (r, M) ~, (g,1). Thus,
we have Wt.(p') = Wt.(o}) + Wtn(oh). In the run o}, all transitions are of
weight 0, and therefore, Wt;,(c%) = 0. Using induction hypothesis, we can also
divide p into o1 = qg ~ 7 and o9 = r ~, ¢, where o7 corresponds to o}, and
Wt.(o1) = Wt.(0o}) + M. Now, we have

Wt.(p1) = Wt.(p) +d

Wt.(p)+1+d

Wt.(o}) + Witin(05) +1+d
Wt.(o1) — M +1+d

But, Wt.(p) = Wt.(o1) + Wt;n(02), therefore, Wt;,(02) = 1+ d — M. But,
from Lemma 4.4, Wt;,(02) > —M, orl+d— M > —M or Il +d > 0. Let
" = min(p, M). Therefore, I’ € [0, M].

(«=) Suppose, we can extend the run p’ with the transition ¢ := (q,1) % (¢/,1')
to get the run pj. By construction, d = T(q,a,q’) # —oco. Therefore, we can
extend the run p with transition ¢ % ¢’ to get the run p;. It is straightforward
that P.1 holds. We consider the following two cases to prove that P.2 and P.3
hold.

5Let p = qo ~»w ¢ be a run of automata A over w with end(rho) = ¢, and t = ¢ = ¢
be a transition. The run p’ = qo ~w ¢ 25 ¢/, which exactly the same as p except it has an
additional transition from the end state of p, is defined to be eztension of p with transition ¢
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Case 1. I’ — | = d: The weight of the transition (g¢,1) % (¢/,1') will be 0, in
which case Wt.(p1) = Wt.(p) +d = Wt.(p) +1+d = Wt.(p') +1'. Thus, P.2
holds. If Wi,.(p}) > 0, then Wi,.(p') > 0 as weight of ¢ is 0.

Otherwise, by construction, the transition ¢ could only be taken if ' = M
and [ +d > M. In that case,

Wtr(pl) = P)

Wi, (
Wt.(p )+l+d

Wt (') + (1 +d— M)+ M
Wt.(p}) + M , as weight of t is (I +d — M)

Thus, P.2 holds. It is left to prove that P.3 holds. If Wt,(p}]) = 0, then there
is nothing to prove. Otherwise, if Wt.(p}) > 0, then Wt.(p') > 0. Using the
same argument as Case 2 in the other direction, we can prove that I’ > 0.

Case 2. I’ = M and | +d > M: In this case, the weight of the transition is
l4+d— M, and hence the weight of the run

Wt.(p}) + M = Wt.(p') + (I+d— M)+ M
= Wt (p) +d
Wtr(pl)

Hence, P.2 is established. Also, since I’ = M > 0, therefore, P.3 trivially holds.

To finish the proof of [D] = [C], let p € R(w) and p' € RP(w) be any
two corresponding runs, where end(p) = q and end(p’) = (q,1). If v(q) = —o0,
then +/((g,1)) = —oo, and hence Wit(p) = Wi(p') = —oo. Otherwise, y(¢) =0
If Wt,.(p') =0, then from P.2, Wt.(p) =1 > 0as [C] > 0, and if Wt.(p') >0
then from P.3, I > 0. Now, by construction, v((q,1)) = v(¢) + 1 = [, and
therefore, Wt(p') = Wt.(p') + v((¢,1)) = Wt.(p) +1 = Wi(p). Therefore,
max ¢ go () ( WH(p)) = max, cgo ) (Wi(p')), or [D] = [C]. It can be readily
observed that D is unambiguous as each accepting run of D corresponds to an
accepting run of C, and C' is unambiguous. O

Any word in an unambiguous automaton A over Ny, ., would have the weight
0 iff each transition in it’s accepting run has the weight 0. The set of words
which have the weight 0 over A is regular.

Lemma 4.7. Given an unambiguous automaton A over Npyax, the set then
R = {w | [A](w) = 0} is a constructible reqular set.

Proof. Let A =(Q,\,T,v). We construct another automata A’ = (Q, N, T',~")
which is same as A in structure but all the transitions, initial weights, and final
weights which are not 0 are removed. Formally, for all q,¢" € Q, N (q) = A(q)
if AM(¢) = 0, else —o0, T'(q,a,q') = T(q,a,q') if T(q,a,q’) = 0, else —oo, and
' (q) = v(q) if v(¢) = 0, else —oo. Tt is clear that the weight of every word over
A’ is either 0 or —oo. We claim that for all words w, [A](w) = 0 iff [A'](w) = 0.
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As A is unambiguous, [A](w) = 0 < there is a run p of A over w with initial
weight, weight of each transition, and final weight equal to 0 < there is an
accepting run p’ of A’ over w < [A'](w) = 0.

As all the words accepted by A’ have weight 0, consider the finite automata
(NFA) B (Q,1,A, F) with I = {q | A(q) = 0}, A(g,a) = {¢" | T'(g,a,q") = 0},
and v(q) = {q | v(q) = 0}. It follows readily that B accepts the set of words
that have weight 0 in A. O

In the following Lemma, we prove that given a k-ambiguous weighted au-
tomaton A and a DFA B, we can construct a k-ambiguous weighted automaton
C that outputs A(w) if w € L(B), else does not accept w.

Lemma 4.8. Let A = (Q,\,T,v) be an k-ambiguous (sequential, resp.) au-
tomaton over the semiring S = (S, ®,®,1,0), and R be a regular set. We can
construct the k-ambiguous (sequential, resp.) automaton C over Nyax such that
[CH(w) = [A(w) if w € R, else 0.

Proof. Let B = (P, py, 0, F) be the DFA, with state space P, initial state po,
transition function ¢, and final state set F', recognizing the language R. Con-
struct C = (R, N, T',~') with Q' = @ x P such that for all ¢,¢' € Q,p,p’ € P,

Aa), ifp=po
A/ , — )
(¢:p) {@, otherwise

/ _Je), ifqeF
7 (a.p) = {@, otherwise

T'((0.p). 0, (¢ 7) {T(q,avq’), if pf =§(p, a)
0, otherwise

The projection of any run p of C over the first coordinate of the states will
give a run p’ over A with Wi(p) = Wi(p'). This immediately implies that if A is
unambiguous, then C is unambiguous. Furthermore, the projection of any run
of C over the second coordinate of the state will give us a accepting run over
B. Hence, the only words that can have an accepting run in C' must be in R,
and the weight of these words will be same as that in A. Therefore, if w € R,
then [C](w) = [A](w), otherwise [C](w) = 0.

It is trivial to see that if A is sequential, then C would be sequential. O

4.3 Putting it all together...

First, we prove the following theorem using the lemmas that we discussed in
subsection 4.1 and 4.2.
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Lemma 4.9. If the function f € FSEQ N UNAMB, then there exists a au-
tomaton C which is both finitely sequential and unambiguous.

Proof. Let A = Ule A; and B be finitely sequential and unambiguous weighted
automata computing the function f. Since, [B](w) = max; ([A;](w)), we have
[A;] < [B]. From Corollary 4.3.1, there exists an unambiguous automata D;
over Npax which computes [B] — [A;]. Let R; = {w | [B](w) = [4;](w)} =
{w | [D)(w) = 0} Now, applying the Lemma 4.7, the set R; is regular. Let
R, = R;\ Uj>1- R;. Using Lemma 4.8, let A} be a sequential automaton such
that [A;](w) = [A:](w) if w € R}, else —oco. Consider the finitely sequential
automaton A’ = JI_, (A}).

We first show that A’ is unambiguous. Let us suppose, for the sake of
contradiction, that there is a word w that is accepted by both A} and A;» for some
i <j €[Lk], then w € R and w € R}, but w € R; = w € R; and w ¢ Ry,
which is a contradiction.

Let w by any word. We know that [A](w) = [B](w). Since A is finite union
of sequential automata A;, w must be accepted by some A; with weight [B](w).
Let j be the largest index for which [A,](w) = [B](w). Therefore, [4;](w) #
[B](w), or w ¢ R, for all I > j. Since R} = R;\ ;s ; R, by definition, w € R/,
hence, [A'](w) = [A}](w) = [A;](w) = [A](w). For the other direction, if w
is accepted by A’, then it must be accepted by some A;, and hence by A; with
[4;)(w) = [AJ(w), or [A](w) = [4}](w) = [A;](w) = [AJ(w). Therefore,
[A'] = [A]. O

Now, using the Lemma 4.3, we shall finally prove the Theorem 4.1.

Proof of Theorem 4.1. (=) Let f € LCRA®(®);, and let A be the CRA com-
puting f such that every update matrix is diagonal and there is at most one
non-zero entry in p(q), for every ¢ € Q. As A is copyless, thus f € FSEQ.
Moreover, since there is at most one non-zero entry in pu(q), for every q € Q,
and A is plusfree, we have f € UNAMB. Therefore, f € FSEQN UNAMB.

(<) Let f € FSEQN UNAMB. From Lemma 4.3, there exists an weighted
automata A that computes f and is both finitely sequential and unambiguous.
Let A = Uie[l,k] A;, where each A; = (Qy, qoi, \i, 0i,7vi) is sequential. Let Q' =
Q1 X Q2 ...x Q. Using the construction described in Lemma 3.4, we construct
an equivalent LCRA A = (Q, X, qo,d, 1o, 1) such that each update matrix is
diagonal. Let A" = (Q', X, qo, J, Vo, ) be the LCRA obtained by removing all
the states in A which are not useful.

Suppose, for the sake of contradiction, that there exists a state g such that
(¢) has more than one nonzero entry. Let x;,z; € X such that u(q)(z;), u(q)(z;) #
—00. By construction, after reading a word w in A’, z; and x; hold the run-
ning weight of run of A; and A; over w, respectively. Moreover, for any state
(q1,G2,---,qk) € Q', u(q)(x;) is nonzero iff ¢; is a final state of A;. Hence, there
exists a word w such that both A; and A; have a accepting run over w, which
contradicts the fact that A is unambiguous. Hence, f € LCRA(®)1.; O
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5 Conclusion

In this thesis, we discussed various classes of LCRA and their relation to the
classes of weighted automata. In particular, we showed that, over all semirings,
the copyless LCRA with k registers compute the class kKSEQ, plusfree LCRA
compute the class which is subset of FAMB, and plusfree LCRA with further
restriction on final expression is equivalent to UNAMB. We also discussed a few
results which hold over tropical semirings.

We believe that kAMB = LCRA(®);, for idempotent semirings. The proof
requires us to decompose a kAMB WA into k unambiguous WA, but the formal
proof is left for further work.

A natural direction for future work is to find different restrictions on update
matrices which give robust and meaningful classes of functions. Pumping Lem-
mas for various general classes of functions definable via WA are discussed in
[11]. As LCRA are deterministic, another direction could be to come up with
different versions of the pumping lemmas for various subclasses of LCRA that
we discussed, which are, in some way, easier to apply and reason about than
their WA counterparts.

The LCRA with resets are also equally expressive as WA. A third direction
could be to study the structural restrictions on LCRA with reset.
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